
CS132 Quizzes
May 2021

Josh Fitzmaurice, Edmund Goodman, and Justin Tan

1 Data Representation Test (Josh Fitzmaurice)

1.1 Briefly describe why binary code is commonly used in
computer hardware

Computer use electricity to send signals around the components. These signals
can be of varying voltages. There are levels of voltage that determine whether
the signal is high or low. We only have a high and a low because noise can
make the voltage amount vary slightly. Having binary code where the voltage
is either high or low limits the affect of noise in a system.

1.2 How many bits in a byte

8

1.3 In the binary number 101010102 what is the value of
the MSB?

1

1

1.4 Make a table counting upwards from 0 to 1610 in dec-
imal, binary, octal and hexadecimal.

Binary Octal Decimal Hexadecimal
0 0 0 0
1 1 1 1
10 2 2 2
11 3 3 3
100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F
10000 20 16 10

Table 1: numbers from 1 - 16

1.5 Briefly explain the difference between value and rep-
resentation, giving an example.

Representation is how we show values and can change with different represen-
tations. Whereas the value is set and even though you can represent a value
in different ways the value will remain constant. E.g. 13 in decimal is 1101 in
binary or 15 in Octal.

1.6 Which of the following are not valid hex values?

a - valid
b - valid
c - invalid
d - valid
e - invalid

1.7 What is 27428 in binary?

010 111 100 010

2

1.8 Convert 10110010111110012 to hex

B2F9

1.9 Convert 4210 to binary

101010

1.10 Convert 738 to hex.

111

1.11 Convert 11011001002 to decimal.

868

1.12 Convert 400010 to octal.

1111101000002
76408

1.13 Calculate the following binary sum: 10100111+01110001

100011000
assuming we are allowing an overflow

1.14 Calculate the following binary sum: 10111+11011

110010
assuming we are allowing an overflow

1.15 Show the binary representations for –1310 in
a. signed magnitude and
b. two’s complement.

a. 11101 b. 13 = 01101 Flip the bits
10010
add 1
10011

1.16 a. Find the binary two’s complement representations
of +1210 and –1010.
b. Use your answers to subtract 10 from 12. Show
your working

12 = 01100
10 = 01010

3

flip bits
= 10101
add 1
-10 = 10110

12 − 10 = 12 + (−10) = 01100 + 10110 = 00010
Remember we remove the overflow.

1.17 Do the following statements describe fixed or floating
point representations, both or neither?
a. It’s fast
b. Provides the best resolution
c. Copes with a wide range of numbers
d. Implementation is complicated
e. Can’t represent some values
f. Is described by an international standard
g. Can represent any value
h. Allows simple multiplication by two

a - fixed b - fixed c - floating d - floating e - both f - floating g - neither h - both

1.18 Using 4 bit binary arithmetic, illustrate overflow er-
ror with an example.

1101 + 0100 = 10001
the MSB is an overflow error in this example.

4

1.19 Describe IEEE 754 single precision floating point rep-
resentation using a labelled diagram.

The MSB represents the sign of the number 1 for negative 0 for positive (we’ll
denote this as s).
The next 8 MSB’s are the exponent (we’ll denote as e)
The final 23 bits are the fraction (we’ll denote as f)
We then calculate the value using the following formula:
(−1)s × 1.f × 2e−127

Sign bit Exponent Fraction
1 10001010 1101000000000000000000
1 11 0.8125

Table 2: example

(−1)1 × 1.8125 × 211 = −3712
There are also some special values.

5

2 Digital Logic Test (Josh Fitzmaurice)

2.1 Subtract 9 from 13 in 8-bit wide two’s complement.

13 = 00001101
9 = 00001001
flip bits
= 11110110
add 1
-9 = 11110111
13 + (-9) = 00001101 + 11110111 = (1)00000100
ignore the overflow
13 - 9 = 00000100 = 4.

2.2 Explain, with the aid of a diagram, the difference be-
tween combinatorial and sequential logic circuits.

A combinatorial logic will give the same results given the same inputs every
time. There is no state of the circuit that can affect the output.
Whereas a sequential logic circuit can have a state which the circuit is in that
could mean given the same input at different times could give a different result.

Figure 1: examples

6

2.3 Show the truth table for an OR gate.

A B Output
0 0 0
0 1 1
1 0 1
1 1 1

Table 3: OR

2.4 Show the truth table for an XOR gate.

A B Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 4: XOR

2.5 Design a circuit that implements the function of an
EX-OR gate using only NOT, AND and OR gates.

Figure 2: examples

7

2.6 Show the truth tables for a AND gate.

A B Output
0 0 0
0 1 0
1 0 0
1 1 1

Table 5: AND

2.7 Design a circuit that implements the function of an
OR gate using only NAND gates.

Figure 3: examples

8

2.8 Show the truth table for a 1-bit full adder.

A B Carry In Sum Carry Out
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 6: 1-bit full adder truth table

2.9 Design am N-bit Full Adder circuit.

Figure 4: examples

2.10 Explain how an N-bit Full Adder circuit can be mod-
ified to form an N-bit subtractor circuit.

We can use the fact that a-b = a+(-b) and have a mode control line (z) that
can turn b into -b.

This can be done by flipping the bits of b and then adding 1. So we can
XOR each B in b with the control line. When z is high the bits will be flipped,
otherwise they will remain the same. Then to add the extra bit we can just use
z as the Carry In to the first 1-bit full adder.

9

2.11 Design an N-bit Subtractor circuit.

Figure 5: examples

2.12 Explain the function of a decoder, giving an example
of where a decoder might be used.

A decoder turns n inputs into 2n outputs. A decoder turns one of the outputs
on determined by the binary value of the input.
e.g. for an active-low decoder the truth table will be as follows:

x0 x1 y0 y1 y2 y3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Table 7: decoder

Decoders are often used to address unique memory locations in a micropro-
cessor system

10

2.13 Explain the function of a multiplexer, giving an ex-
ample of where a multiplexer might be used.

A multiplexer turns n inputs into 1 output, determined by some control modes.
A multiplexer turns the output into one of the inputs determined by the control
modes.
multiplexer truth table for a 4-1 multiplexor (inputs are x0, x1, x2, x3 and control
signals are S0, S1):

S0 S1 output
0 0 x0

0 1 x1

1 0 x2

1 1 x3

Table 8: multiplexer

multiplexers are used for source selection control e.g. home stereo control.

2.14 Explain, using an appropriate truth table or circuit
diagram, the operation of a D-Type latch.

A D-Type latch is essentially 1 bit of memory. Depending on the current state
of the D-Type latch the input to the d-type latch will alter the output.
Below is the circuit diagram of a D-Type Latch

Figure 6: d-type latch

Below is the truth table for the d-type latch:

11

Enable D Q Q

0 0 Q Q
0 1 Q Q
1 0 0 1
1 1 1 0

Table 9: D-Type latch

2.15 Show how D-type latches can be arranged to form
an N-bit register, explaining the function of your cir-
cuit.

Figure 7: d-type latch

make note this diagram assumes the D-type latches are rising edge triggered.

12

3 Assembler quiz (Edmund Goodman)

3.1 Explain the role of the Arithmetic Logic Unit (ALU)
in the operations of a microprocessor

The Arithmetic Logic Unit is a subcomponent of the microprocessor which per-
forms mathematical and logical operations on data within the microprocessor.

It is capable of performing various different operation, which can be selected
between by control lines, and is distinct from other components which read
and write the data to provide its inputs and store its outputs, only handling
performing the operations on the data

3.2 Explain the role of the Control Unit (CU) in the op-
eration of a microprocessor

The control unit is a subcomponent of the microprocessor decodes program
instructions into a set of signals which cause and control the logistics for the
execution of the instruction. For example, some signals it outputs are

It operates at the clock speed of the processor, and is dependent on the state
of other items in the microprocessor (e.g. the CCR)

3.3 Outline the Fetch-Execute cycle, making reference to
the role it plays in the execution of computer pro-
grams

The fetch-execute cycle is the sequence of steps taken by the computer to enact
a single instruction of machine code (essentially one line of assembly) stored in
memory. These steps are:

1. Fetch

(a) Retrieve the instruction the main store (MS) at the address currently
in the program counter (PC)

(b) Store the retrieved instruction in the instruction register (IR)

(c) Increment the program counter (PC)

2. Decode

(a) The control unit extracts and decodes the opcode from the instruc-
tion in the instruction register (IR)

(b) Read the effective address to establish opcode type, determining
whether another read operation is needed

3. Execute

(a) Control unit outputs signals to control the logistics of executing the
instruction

13

(b) Changes in the state resulting from the execution of the instruction
may occur

Computer programs, irrespective of what language they are written in, are
reduced down to a large sequence of these instructions to be run in sequence, so
the fetch-execute cycle is run many times, once for each instruction, to execute
the program

3.4 Explain the role of Program Counter (PC) and In-
struction Register (IR) in the Fetch-Execute cycle

The program counter is use to keep track of which instruction is next to be
executed in the fetch-execute cycle, ensuring the instructions are evaluated in
the correct order. In every cycle, it is incremented after the instruction is
fetched, so it points to the address of the instruction to be fetched in the next
cycle. It can also be moved by jump instructions, to allow control flow.

The instruction register stores the instruction after it is read from the lo-
cation in the main store indicated by the program counter. This copying is
important, as it means it can be accessed quickly, instead of slower operations
of reading the main store, and that in indirect addressing, it is not overwritten
by the data retrieved that is needed to perform the instruction

3.5 Explain the purpose of the Condition Code Register
(CCR), giving an example of a situation in which it is
used

The condition control register is a subset of the status register within the mi-
croprocessor, specifically those relating to the condition of the arithmetic logic
unit after the execution of an operation.

One of the ways it may be used is to indicate to the control unit that an
overflow has occurred in an arithmetic operation on two data values

3.6 With the aid of a diagram, explain the role of a Com-
piler in process by which machine code is generated
from a high-level computer program

The compiler takes program code written in a high level language, such as C or
Rust, and translates it into a sequence of low-level assembly instructions. Then,
an assembler is used to convert these instructions into machine code. Whilst it
does not fully convert between program code and machine code, it performs the
majority of the translation, as assembly has mostly a one-to-one mapping with
machine code

14

Figure 8: Compiler diagram

15

3.7 Show the general form of a statement in assembler,
giving a example of a specific statement and showing
how it related to this general form

The general form of an instruction is as follows:

<opcode> <address_1> <address_2> | Comment (optional)

The opcode indicates what the instruction does, the addresses indicate what
the instruction should be performed on, and the optional comment indicates
what the instruction is being used for

A specific instruction, with the opcode indicating adding, and the registers
being D0 and D1 might be:

add.l D0, D1 | Add the value of the D1 register to the D0 register

3.8 Give an example of an arithmetic instruction in as-
sembler (not entirely sure if this is correct)

add.l D0, D1 | Add the value of the D1 register to the D0 register

Using direct addressing on a long word, add the value of the D1 register to the
D0 register

3.9 Explain immediate addressing, giving an example of
an instruction that uses this addressing mode

Immediate addressing is when the actual value to be used is stored as a fixed
value within the instruction. For example, an instruction to always add a con-
stant number to a register might be as follows:

add.l D0,#$42 | Add the hexadecimal value 42 to the register D0

3.10 Explain absolute addressing, giving an example of
an instruction that uses this addressing mode and
showing one disadvantage of absolute addressing

Absolute addressing is when the actual address of the value to retrieve from
the main store memory is stored as a fixed value within the instruction. For
example, an instruction to always add the value stored at a fixed address to a
register might be as follows:

add.l D0, $FFF00 | Add the value at the address FFF00 in the

main store to the register D0

This has the disadvantage of the fact the most programs are placed in dif-
ferent places in memory at each run-time, dependent on what other programs
the computer is performing at the same time. Hence, absolute addressing is
unlikely to point to data within the remit of the program, so is not useful

16

4 Memory systems quiz (Edmund Goodman)

4.1 Give four factors that influence the selection of an
appropriate memory technology

1. Cost of production

2. Access speed

3. Frequency of access

4. Capacity

4.2 Explain the “designer’s dilemma” for memory systems

The designers dilemma is the trade-off in designing memory which is fast, high
capacity, and cheap to manufacture. It is not possible to design memory which
achieves all of the properties, so the dilemma is how to select which ones to best
fit the use case

4.3 Explain, using a diagram, the memory hierarchy

The memory hierarchy is a way of approaching the designers dilemma to get
the best of each of the properties.

Small amounts of very fast, frequently accessed memory close to the mi-
croprocess (registers and cache) are used to allow the computer to perform
operations very quickly, without having all of the memory of this type, as that
would limit capacity and cost a huge amount.

Further away from the microprocessor, slower, higher capacity and cheaper
memory is used to store data which is less commonly accessed, so high speeds
are not needed.

The diagram below shows a representation of the memory hierarchy:

4.4 Explain the role of cache memory

Cache memory is a small amount (typically tens of kilobytes) of memory near
the microprocessor which can be accessed very quickly. Cache memory can be
used to store values in memory which are likely to be retrieved, so the read
times are quicker than out of the main store

In computer systems, the next memory location to be accessed is very likely
to be close to the previous memory location accessed. Cache memory often
copies the memory locations around the last memory location, which means
that a significant amount of the time, the cache already has the memory needed,
increasing read speeds

17

Figure 9: The memory heirarchy

4.5 How can cache memory exploit spatial locality

Spatial locality is the idea that memory adjacent to the program counter position
is much more likely to be accessed next than other memory in the computer
(estimates say that 90% is within 2 kilobytes to either side). This means that
the cache can store this memory, allowing faster access then if it had to look it
up in the main store

4.6 How can cache memory exploit temporal locality

Temporal locality is the idea that some memory is more likely to be used in
the future. If an estimate of what this likely memory is can be made, it can
be stored in the cache, allowing faster access then if it had to look it up in the
main store

4.7 Explain, using a worked example, how a parity bit can
be used to detect errors. You should state the types
of error that your scheme is capable of detecting and
correcting

A parity bit is an additional bit of information included with data to be sent
used to detect errors that occur in its transmission.

There are two types of parity, odd and even parity. In even parity, the
additional parity bit is used to make the number of the number of ones and the
number of zeroes in a transmission both even. For example, in 8-bit parity, if

18

the 7-bit message: “0101001” is sent, then even-parity would add the parity but
“1” to the end to make the message “”0101001 1”, so the number of zeros and
the number of ones are both even. In odd parity, the same process is applied,
but the digit is added to make both numbers odd.

This error checking scheme can detect when an odd number of bits in the
transmission have been changed (when an even number are changed, it presents
as correct, even though bits have been flipped). This means that whilst it is
robust against single errors, bursts of errors make it only around 50% effective.

There is no way to identify where the error occurred, so if an error is detected,
it is corrected by replying to the sender that a re-transmission is needed

4.8 Explain, using a worked example, how error correct-
ing codes can use bit- and column-parity to detect and
correct errors. You should state the types of error
that your scheme is capable of detecting and correct-
ing

Bit and column parity extends using single parity bits, by not only having a
parity bit at the end of each “word”, e.g. a byte with 7 bits of message and one
of parity, but also sending a parity “word” after a group of words in the same
way of a parity bit after a group of message bits.

For example, in even parity:

0101010 1 0110011 0 0111000 1 0110100 1 0101000 0 0111100 0
0000011 0

The parity word at the end is a parity bit of the column - for example, the
first column is 0000000, so the parity bit would be another 0. In this example,
the parity word is 0000010, with each being the parity bit of the column.

All burst errors, up to 14 bits can be identified using this schema, and they
can be corrected by looking up the failed parity bit by which row and which
column had incorrect bits, and flipping them

19

5 I/O Mechanisms Test (Josh Fitzmaurice)

5.1 Explain Memory-mapped IO

Memory mapped I/O is where Memory on IO devices are given address values
that a CPU can access.
These address locations can be accessed using the same address bus as used for
memory.
–need one more point

5.2 Discuss the advantages and disadvantages of memory-
mapping as a mechanism for I/O

Advantages:
Memory-mapped IO is simpler than many alternatives and there requires less
internal logic which can make the design and fabrication of a CPU cheaper.
Disadvantages:
Portions of memory must be reserved for IO.
For 16-bit and 32-bit systems this becomes a problem as there are not as many
address spaces available.

5.3 Explain the concept of Polling

Polling is where we check whether the IO device is ready to be used. If it is not
ready we go back and read the status, or we could interleave another task to be
done while waiting for the status to be ready.

Figure 10: Polling

20

5.4 Contrast busy-wait and interleaved polling. Your an-
swer should use labelled diagrams where appropriate.

busy-wait polling is where we read the status of an IO device and if it is not
ready we just read the status again on repeat until its ready.

Figure 11: busy-wait polling

Interleaved polling is similar but instead of just repeatedly checking whether
the device is ready, we do another task while waiting for the device to be ready.
This allows for better multi-tasking.

Figure 12: interleaved polling

5.5 Discuss the advantages and disadvantages of polling

advantages:
Simple software and hardware required to perform polling. Need a looping

21

construct for software and a notion of ”ready” for hardware.
disadvantages:
A lot of CPU time and power is wasted on checking IO devices.
Also, interleaving tasks can lead to a significantly delayed response to a device.

5.6 Explain, using appropriate diagrams, how interrupts
can be used to provide asynchronous IO

Figure 13: Interrupt

The figure above shows how when an interrupt is called a Jump is made to
a service routines which is performed before going back to the main program.
These interrupts forces the CPU to jump between service routines which can
make it appear that the CPU is performing 2 or more tasks ”simultaneously”

5.7 Explain context switching

when an interrupt is called the CPU completes its current instruction then
pushes the PC and SR’s to a stack.
Then load the PC with the address of the Interrupt Handler.

When returning from an Interrrupt we pop the PC and SR’s from the stack
then load the PC with the popped return addresses.

5.8 Discuss the advantages and disadvantages of inter-
rupts as a mechanism for IO

Advantages:
Fast response
No wasted CPU time

22

Disadvantages:
All data trannsfer is controlled by the CPU
complex hardware and software.

5.9 Contrast the suitability of polling and interrupt driven
IO for use in an embedded system of your choice.
Your answer should state any assumptions clearly

Chosen embedded system - A safety critical system for an airplane.
For a device like this polling would be detrimental as there will be a lot of
time where we are checking whether an IO device is ready to respond instead of
performing the safety-critical operation. This means that there is a lot of time
where the CPU is not performing its operation.
Interrupts are much better suited for a safety critical system. This is because
a lot less time is wasted on checking whether IO devices are ready to be used.
This means there is a fast response which is needed for safety-critical systems

5.10 Explain Direct Memory Access (DMA). Your answer
should give an example of where DMA would be a
suitable choice as an I/O mechanism.

DMA is where the use of system busses is surrendered by the CPU to a DMA
Controller (DMAC). This avoids the bottleneck of the CPU for I/O.
When an IO device needs to access the system busses they request a DMA
transfer, the DMAC passes the request to the CPU. Then the CPU initialises
DMAC which requests use of system buses. The CPU then responds with a
DMA Ack when it’s ready to surrender buses.
There are 2 modes of operations for DMA: cycle stealing and Burst Mode.
Cycle stealing is where the DMAC uses system busses when they are not being
used by the CPU.
Burst mode is where the DMAC requires system buses for extended transfer of
large amounts of data. The DMAC locks the CPU out of using the system buses
for a fixed time or until the CPU received an interrupt from a greater priority.

23

6 Processor Architecture (Justin Tan)

6.1 Distinguish between macro and micro instructions

Micro instructions are the individual signals that the control unit has to assert
to a microprocessor to change the state of values in the processor. When sev-
eral micro instructions are executed in the right sequence, the microprocessor
computes an overall result.
This sequence of instructions are specified by a macro instruction in the form
of an opcode which is fed into the control unit from the instruction register.
The control unit is able to translate this opcode into the appropriate sequence
of micro instructions that achieve the desired result mentioned earlier.

6.2 Relate the fetch-execute cycle to the execution of macro
and micro instructions

Before each macro instruction is received as an opcode, the control unit has to
fetch it. The contents of the program counter are passed to the MAR, the MAR
sends this to Main store to retrieve the data from the address. This data is
typically passed to the MDR and then the IR, and the opcode is then sent to
the control unit.
This opcode is translated to a sequence of control signals by the control unit,
and each of these signals is a micro instruction. When carried out in the right
sequence, these micro instructions compute a result which is the desired result
of the macro instruction. To execute the next macro instruction, the control
unit has to fetch the next set of instructions and then execute it.

6.3 Give a detailed explanation of the hardwired approach
to control unit design

The hardwired approach consists of 4 main components. The sequencer takes
the clock input of our microprocessor, and its main role is to align the operation
of the combinatorial logic circuit in the control unit (CU) with the control steps
for each macro instruction that depend on the microprocessor’s clock. Hence
these regulated signals should ideally match the clock frequency.
The instruction decoder decodes the opcode and sends a signal down the right
path that will have the appropriate logic gates to assert the right signals to
other subsystems together with the sequencer.
The fetch/execute flip-flop works together with the sequencer to regulate the
control rounds, essentially making sure that the sequencer is in sync with the
start and end of control rounds.
Lastly, the main component in the control unit contains the combinatorial logic
circuit that has inputs from the decoder and outputs to communication busses
that connect to the rest of the microprocessor. It also has output lines to the
flip-flop to signify when certain control rounds start and end.

24

6.4 Discuss the advantages and disadvantages of using a
hardwired approach to control unit design

The advantages are that it is very fast, as it operates at the speed of logic gates.
The disadvantages are a long design time because of complex hardware, there
is no backward compatibility, and it is inflexible as it is difficult to change the
design if new instructions are added.

6.5 Given a detailed explanation of the micro-programmed
approach to control unit design

The CU with this approach is made up of a few components. Firstly there is an
OTOA circuit, which is essentially a lookup table that translates opcodes into
microprogram addresses.
This is fed into a CN circuit that is meant to control the value given to the
micro program counter (microPC). The microPC is the internal PC of the CU
and it stores the value of the address of the microprogram to be executed next.
Before each opcode is received, the microPC will have to point to the starting
microaddress of the fetch microprogram that initiates the macro fetch opera-
tion in the processor. Otherwise, it points to the microaddress specified by the
opcode.
The microprogram memory is the internal memory of the CU that stores the
microinstructions for each microprogram at its respective microaddress location.
It feeds microinstructions based on the microadress to the microIR, which then
takes the values in the instruction and sets the appropriate output values for
the CU.
Microinstructions are typically executed in sequence, incremented by the mi-
croPC, until the last microinstruction is executed. When this happens the mi-
croPC is set such that it either points back to microadress 0 which corresponds
to the starting address of the fetch microprogram or points to the microaddress
set by the OTOA.

6.6 Discuss the advantages and disadvantages of using a
micro-programmed approach to control unit design

The advantages are that is easy to design and implement, there is backward
compatibility because it is can be reprogrammed for new instructions but still
accept older instructions. Its hardware is simple compared to hardwired imple-
mentations and its flexibility of design allows families of processors to be built.
Its disadvantage is that it is slower than hardwired implementations.

6.7 Distinguish between CISC and RISC architectures,
giving a specific example of each

CISC architectures primarily use the micro-programmed approach for control
unit design, while RISC architectures use a hard-wired approach. A very well

25

known example of RISC is of computer chips made from the company ARM
(Advanced RISC Machine). While Intel uses a hybrid approach, commonly used
instructions are hardwired, while others are micro-programmed, their chips are
a good example of ones that use the CISC architecture.

26

