CS132 Quizzes - Digital Logic

May 2021

Josh Fitzmaurice

1 Subtract 9 from 13 in 8-bit wide two's complement.

 $\begin{array}{l} 13 = 00001101\\ 9 = 00001001\\ \text{flip bits}\\ = 11110110\\ \text{add 1}\\ -9 = 11110111\\ 13 + (-9) = 00001101 + 11110111 = (1)00000100\\ \text{ignore the overflow}\\ 13 - 9 = 00000100 = 4. \end{array}$

2 Explain, with the aid of a diagram, the difference between combinatorial and sequential logic circuits.

A combinatorial logic will give the same results given the same inputs every time. There is no state of the circuit that can affect the output.

Whereas a sequential logic circuit can have a state which the circuit is in that could mean given the same input at different times could give a different result.

3 Show the truth table for an OR gate.

А	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

Table 1: OR

Figure 1: examples

4 Show the truth table for an XOR gate.

5 Design a circuit that implements the function of an EX-OR gate using only NOT, AND and OR gates.

Figure 2: examples

6 Show the truth tables for a AND gate.

А	B Output				
0	0	0			
0	1	0			
1	0	0			
1	1	1			
Table 3: AND					

7 Design a circuit that implements the function of an OR gate using only NAND gates.

Figure 3: examples

8 Show the truth table for a 1-bit full adder.

Α	В	Carry In	Sum	Carry Out
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Table 4: 1-bit full adder truth table

9 Design am N-bit Full Adder circuit.

10 Explain how an N-bit Full Adder circuit can be modified to form an N-bit subtractor circuit.

We can use the fact that a-b = a+(-b) and have a mode control line (z) that can turn b into -b.

This can be done by flipping the bits of b and then adding 1. So we can

Figure 4: examples

XOR each B in b with the control line. When z is high the bits will be flipped, otherwise they will remain the same. Then to add the extra bit we can just use z as the Carry In to the first 1-bit full adder.

11 Design an N-bit Subtractor circuit.

Figure 5: examples

12 Explain the function of a decoder, giving an example of where a decoder might be used.

A decoder turns n inputs into 2^n outputs. A decoder turns one of the outputs on determined by the binary value of the input.

e.g. for an active-low decoder the truth table will be as follows:

x_0	x_1	y_0	y_1	y_2	y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Table 5: decoder

Decoders are often used to address unique memory locations in a microprocessor system

13 Explain the function of a multiplexer, giving an example of where a multiplexer might be used.

A multiplexer turns n inputs into 1 output, determined by some control modes. A multiplexer turns the output into one of the inputs determined by the control modes.

multiplexer truth table for a 4-1 multiplexor (inputs are x_0, x_1, x_2, x_3 and control signals are S_0, S_1):

S_0	S_1	output
0	0	x_0
0	1	x_1
1	0	x_2
1	1	x_3

Table 6: multiplexer

multiplexers are used for source selection control e.g. home stereo control.

14 Explain, using an appropriate truth table or circuit diagram, the operation of a D-Type latch.

A D-Type latch is essentially 1 bit of memory. Depending on the current state of the D-Type latch the input to the d-type latch will alter the output. Below is the circuit diagram of a D-Type Latch

Figure 6: d-type latch

Below is the truth table for the d-type latch:

Enable	D	Q	\overline{Q}
0	0	Q	\overline{Q}
0	1	Q	\overline{Q}
1	0	0	1
1	1	1	0

Table 7: D-Type latch

15 Show how D-type latches can be arranged to form an N-bit register, explaining the function of your circuit.

make note this diagram assumes the D-type latches are rising edge triggered.