# CS132 Quizzes - Digital Logic <br> May 2021 <br> Josh Fitzmaurice 

## 1 Subtract 9 from 13 in 8-bit wide two's complement.

```
\(13=00001101\)
\(9=00001001\)
flip bits
\(=11110110\)
add 1
\(-9=11110111\)
\(13+(-9)=00001101+11110111=(1) 00000100\)
ignore the overflow
\(13-9=00000100=4\).
```

2 Explain, with the aid of a diagram, the difference between combinatorial and sequential logic circuits.

A combinatorial logic will give the same results given the same inputs every time. There is no state of the circuit that can affect the output.
Whereas a sequential logic circuit can have a state which the circuit is in that could mean given the same input at different times could give a different result.

## 3 Show the truth table for an OR gate.

$|$| A | B | Output |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Table 1: OR


Figure 1: examples
4 Show the truth table for an XOR gate.
$\left|\begin{array}{c|c|c}\mathrm{A} & \mathrm{B} & \text { Output } \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$

Table 2: XOR

5 Design a circuit that implements the function of an EX-OR gate using only NOT, AND and OR gates.


Figure 2: examples
6 Show the truth tables for a AND gate.

$|$| A | B | Output |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Table 3: AND

7 Design a circuit that implements the function of an OR gate using only NAND gates.


Figure 3: examples
8 Show the truth table for a 1-bit full adder.

| A | B | Carry In |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |  |
| 0 | 1 | 0 |  |  |
| 1 | 0 | 0 |  |  |
| 1 | 1 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 1 | 1 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 1 | 1 |  | Carry Out |
| 0 | 0 |  |  |  |
| 1 | 0 |  |  |  |
| 1 | 0 |  |  |  |
| 0 | 1 |  |  |  |
| 1 | 0 |  |  |  |
| 0 | 1 |  |  |  |
| 0 | 1 |  |  |  |
| 1 | 1 |  |  |  |$|$

Table 4: 1-bit full adder truth table

## 9 Design am N-bit Full Adder circuit.

10 Explain how an N-bit Full Adder circuit can be modified to form an N -bit subtractor circuit.

We can use the fact that $\mathrm{a}-\mathrm{b}=\mathrm{a}+(-\mathrm{b})$ and have a mode control line $(\mathrm{z})$ that can turn b into -b.

This can be done by flipping the bits of b and then adding 1 . So we can


Figure 4: examples

XOR each B in b with the control line. When z is high the bits will be flipped, otherwise they will remain the same. Then to add the extra bit we can just use z as the Carry In to the first 1-bit full adder.

## 11 Design an N-bit Subtractor circuit.



Figure 5: examples

## 12 Explain the function of a decoder, giving an example of where a decoder might be used.

A decoder turns n inputs into $2^{n}$ outputs. A decoder turns one of the outputs on determined by the binary value of the input.
e.g. for an active-low decoder the truth table will be as follows:
$\left|\begin{array}{cc|cccc}x_{0} & x_{1} & y_{0} & y_{1} & y_{2} & y_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1\end{array}\right|$

Table 5: decoder

Decoders are often used to address unique memory locations in a microprocessor system

## 13 Explain the function of a multiplexer, giving an example of where a multiplexer might be used.

A multiplexer turns $n$ inputs into 1 output, determined by some control modes. A multiplexer turns the output into one of the inputs determined by the control modes.
multiplexer truth table for a 4-1 multiplexor (inputs are $x_{0}, x_{1}, x_{2}, x_{3}$ and control signals are $\left.S_{0}, S_{1}\right)$ :
$\left|\begin{array}{cc|c}S_{0} & S_{1} & \text { output } \\ 0 & 0 & x_{0} \\ 0 & 1 & x_{1} \\ 1 & 0 & x_{2} \\ 1 & 1 & x_{3}\end{array}\right|$

Table 6: multiplexer
multiplexers are used for source selection control e.g. home stereo control.

## 14 Explain, using an appropriate truth table or circuit diagram, the operation of a D-Type latch.

A D-Type latch is essentially 1 bit of memory. Depending on the current state of the D-Type latch the input to the d-type latch will alter the output.
Below is the circuit diagram of a D-Type Latch


Figure 6: d-type latch

Below is the truth table for the d-type latch:

| Enable | D | Q | $\bar{Q}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | Q | $\overline{\bar{Q}}$ |
| 0 | 1 | Q | $\bar{Q}$ |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

Table 7: D-Type latch

## 15 Show how D-type latches can be arranged to form an N -bit register, explaining the function of your circuit.



Figure 7: d-type latch
make note this diagram assumes the D-type latches are rising edge triggered.

